Featured News

A team of researchers led by Darrell N. Kotton, MD, the David C. Seldin Professor of Medicine, has been awarded a five-year, $14 million grant from the NIH’s National Heart, Lung, and Blood Institute (NHLBI) for their research, “Developing Pluripotent Stem Cells to Model and Treat Lung Disease.” The new award will fund an integrated, multi-investigator program project grant where four interacting labs headed by four physician-scientists, all located in the Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, will develop next generation stem cell-based therapies for currently incurable genetic lung diseases affecting children and adults, including childhood and adult interstitial lung diseases, an inherited form of emphysema, cystic fibrosis and primary ciliary dyskinesia.

 

Click here to see the article

CReM Latest

Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFβ/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.

 

Click here to see the article

Generation and directed differentiation of patient-specific ABCA3 mutant and syngeneic gene-corrected iPSC lines produces SFTPCtdTomato-expressing iAEC2s.

Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation–mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.

 

Click here to read the article

Announcing

Andrew A. Wilson MD as the Alpha-1 Foundation’s new Scientific Director FOR IMMEDIATE RELEASE November 10, 2022- The Alpha-1 Foundation announces the appointment of Andrew A. Wilson, MD as its new Scientific Director. Dr. Wilson assumes this role with a long-standing passion and commitment to the Alpha-1 community. “On behalf of the Alpha-1 Foundation, I am excited to work with Dr. Wilson to continue the mission-focused work of the Foundation that has been at the forefront of Alpha-1 research for nearly 30 years,” states Scott Santarella, President and CEO of the Alpha-1 Foundation. As a pulmonary and critical care clinician-scientist with a focus on regenerative medicine and stem cell biology, Dr. Wilson’s goal is to advance understanding of and treatment for genetic causes of chronic obstructive pulmonary disease (COPD) and the most common genetic cause of COPD, Alpha-1 Antitrypsin Deficiency (Alpha-1). He has been an active member of the Alpha-1 community since 2006, serving as the head of the Clinical Resource Center (CRC) at Boston University Chobanian & Avedisian School of Medicine, member of the Grant Advisory Committee (GAC) and member of the Research Registry Working Group. Dr Wilson is also site Principal Investigator of the Alpha-1 Biomarkers Consortium (A1BC) study and also of the Alpha-1 Antitrypsin Deficiency Adult Clinical and Genetic Linkage Study at Boston University. Dr. Wilson first became involved with the Alpha-1 Foundation through research during his pulmonary and critical care fellowship at Boston University Chobanian & Avedisian School of Medicine. Interested in developing gene therapies for lung disease, he applied for grant funding from the Alpha-1 Foundation in 2006 and was fortunate to be the recipient of a fellowship grant. Over time, his interest in Alpha-1 grew as he became acquainted with the late John W. Walsh and met Alpha-1 patients at Foundation meetings and events. “I am honored and humbled to have been selected as the new Scientific Director of the Alpha-1 Foundation. Many researchers who are currently working on Alpha-1 research, myself included, probably wouldn’t be doing so if it were not for the support they have received from the Alpha-1 Foundation over the years. In the same vein, having an organized patient community is key since translational research relies upon access to patients with the disease. Researchers must be able to find patients. We are fortunate that Alphas are so enthusiastic and generous in their participation in research. I hope that as Scientific Director I will be able to help the Foundation to advance its mission and work towards a cure for AATD.” In 2012, Dr. Wilson opened the Alpha-1 Center, combining the CRC and the Alpha-1 research program, which has since grown into one of the largest CRCs in the Northeast. The CRC at Boston University Chobanian & Avedisian School of Medicine is highly engaged with the Alpha-1 community through a variety of mechanisms. The Wilson Lab, located at the Center for Regenerative Medicine (CReM) of Boston University/ Boston Medical Center, maintains an active research program focused on Alpha-1. They use patient-derived stem cells, called “induced pluripotent stem cells” or “iPSCs” that can be coaxed to become liver or lung cells in a dish. These cells are used to study how Alpha-1 works in patient cells in the lab and use that system to test potential therapeutics. They also share the cells with other researchers for use in their research efforts directed at developing treatments for Alpha-1 patients. The four core areas of Dr. Wilson’s research are: I) to confirm the clinical significance of the iPSC platform to model in vivo patient biology and demonstrate its potential for testing potential therapeutic agents; II) to better understand the genetic factors and mechanistic drivers that predispose subsets of Alpha-1 patients to develop clinical disease; III) to elucidate the mechanistic contribution of putative COPD susceptibility genes to lung disease pathogenesis; and IV) to develop gene or cell-based therapies for Alpha-1. Dr. Wilson and the Wilson Lab have been actively involved in the Alpha-1 community, participating as a team in the annual Escape to the Cape bike trek on Cape Cod for the past eight years and hosting Alpha-1 support groups from Massachusetts to Maine for visits to CReM many times over the years. These visits have helped inform the CRC about what is important to the patient community and have allowed patients to hear about ongoing research. In some cases, patients have even been able to see their own cells growing in the lab. The Alpha-1 community honored Dr. Wilson in 2014 with the Shillelagh award at the annual Celtic Connection fundraising event to honor his outstanding commitment to Alpha-1

Cystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis
transmembrane conductance regulator anion channel, resulting in significant morbidity and
mortality. The progress in elucidating the role of CFTR using established animal and cellbased
models led to the recent discovery of effective modulators for most individuals with CF.
However, a subset of individuals with CF do not respond to these modulators and there is an
urgent need to develop novel therapeutic strategies. In this study, we generate a panel of
airway epithelial cells using induced pluripotent stem cells from individuals with common or
rare CFTR variants representative of three distinct classes of CFTR dysfunction. To measure
CFTR function we adapt two established in vitro assays for use in induced pluripotent stem
cell-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as
well as planar cultures composed of polarized mucociliary airway epithelial cells, we detect
genotype-specific differences in CFTR baseline function and response to CFTR modulators.
These results demonstrate the potential of the human induced pluripotent stem cell platform
as a research tool to study CF and in particular accelerate therapeutic development for CF
caused by rare variants.

 

Click here to see the article

SUMMARY
Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the
intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent
stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection.We used this platform
to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis
revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function
and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver
damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected
bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent
platform to study responses to EBOV infection.

Click here to see the article

Make a monetary donation
to support our cell sharing mission.

If you want to support our mission, please click on the link below.

Welcome to CReM

My name is Gabrielle. I'm the Administrative Assistant at CReM. Leave us a short message down below. We will get back to you ASAP!

The Wilson lab is focused on two major aspects of regenerative medicine:

1) Developing gene therapy approaches for the study and treatment of lung diseases: The ability to manipulate gene expression in specified lung cell populations has both experimental and therapeutic potential for lung disease. By developing viral vectors that transduce specific lung cell types in vivo, we hope to minimize potential off-target effects while maximizing our ability to target diseased cell populations. We work with lentiviral and AAV vectors to overexpress or knockdown expression of genes important to disease pathogenesis in the lung.

2) Utilizing induced pluripotent stem cells (iPSC) to study human lung and liver diseases: The Wilson lab is interested in the application of patient-derived iPS cells for the study of lung and liver diseases, such as alpha-1 antitrypsin deficiency (AATD).

The Hawkins Lab is interested in how the human lung develops and responds to injury to better understand human lung disease. Induced pluripotent stem cells (iPSCs) offer a unique opportunity to model human lung disease and bridge the gap between research in animal models and humans.

Using this iPSC platform, we are focused on understanding the molecular mechanisms that control human lung development. We hope to apply this knowledge to advance our understanding of and develop precision medicine approaches for lung disease.

The Murphy laboratory is composed of dynamic and passionate researchers who utilize multiple stem cell-based platforms to answer basic biological questions and combat disease. Central directions of the laboratory include: developmental hematopoiesis, the modeling of blood-borne disease, and discovery and therapeutic intervention in sickle cell disease, amyloidosis, and aging.

The Murphy Lab has pioneered: The world’s largest sickle cell disease-specific iPSC library and platforms and protocols that can used to recapitulate hematopoietic ontogeny and to develop and validate novel therapeutic strategies for the disease; The successful modeling of a protein folding disorder called familial amyloidosis demonstrating the ability to model a long-term, complex, multisystem disease in a relatively short time, using lineage-specified cells (hepatic, cardiac and neuronal) derived from patient-specific stem cells; The first iPSC library created from subjects with exceptional longevity (centenarians) that serves as an unlimited resource of biomaterials to fuel the study of aging and the development of novel therapeutics for aging-related disease.

www.murphylaboratory.com

@DRGJMurphy

The Serrano Lab studies neurodevelopment and cardiovascular development in the context of rare multi-systemic disorders originated by pathogenic variants in epigenetic modifiers like KMT2D.  

We aim to identify shared molecular and cellular mechanisms driving cardiovascular and brain development with particular interest in cell differentiation, migration, and cell cycle progression.  

Our lab combines rare disease modeling in zebrafish together with cardiovascular and neurobiology techniques and human iPSC-derived brain organoids and endothelial cells.  

We believe that a patient-forward focus to our projects will help us to get better understanding of disease mechanisms through basic science research. To this end, we are active in the collaborative community among field experts and rare disease patient-advocacy groups who drive our research program to identify therapeutic targets in patient-specific iPS cells. 

The Mostoslavsky Lab is a basic science laboratory in the Section of Gastroenterology in the Department of Medicine at Boston University.

Our goal is to advance our understanding of stem cell biology with a focus on their genetic manipulation via gene transfer and their potential use for stem cell-based therapy.

The Mostoslavsky’s Lab designed and constructed the STEMCCA vector for the generation of iPS cells, a tool that has become the industry standard for nuclear reprogramming. Project areas in the lab focuses on the use of different stem cell populations, including embryonic stem cells, induced Pluripotent Stem (iPS) cells, hematopoietic stem cells and intestinal stem cells and their genetic manipulation by lentiviral vectors.

Our laboratory have already established a large library of disease-specific iPS cells with a particular interest in utilizing iPS cells to model diseases of the liver, the gastrointestinal tract, prion-mediated neurodegenerative diseases and immune-based inflammatory conditions, using iPSC-derived microglia, macrophages and T/NK cells.

The Gouon-Evans lab investigates cellular and molecular mechanisms driving liver development, regeneration and cancer. We specifically interrogate the role of progenitor/stem cells and how they share similar molecular signature and functions during these 3 processes.

Our innovative tools include: 1) directed differentiation of human pluripotent stem cells (PSC) to generate in vitro liver progenitors and their derivative hepatocytes, the main functional cell type of the liver, 2) mouse models with lineage tracing strategy to track in vivo the fate of progenitor cells, 3) PSC derivative cell transplantation into mouse models with damaged livers as cell therapy for liver diseases, 3) dissection of liver cancer specimens from patients to identify and define the impact of specific cancer stem cells in liver oncogenesis.

Projects in the Gouon-Evans lab will lead to a better understanding of the liver development, to the establishment of multi-modular approaches for improving liver regeneration with PSC derivatives, and will reveal the impact of specific cancer stem cells as a target for diagnosis and therapy in liver oncogenesis.