The latest publication from the Kotton lab detailing the transcriptomic programs of iPSC-derived alveolar cells

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli,
is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro
models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo
counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the
transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced
pluripotent stem cell–derived AEC2s (iAEC2s). We found each population occupied a distinct
transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences
from freshly purified 1° cells. Across each cell type, we found an inverse relationship between
proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and
iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not
generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s
cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise
during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic
programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung
health and disease.

Click here to access the full article

Share with friends

Twitter
LinkedIn
Facebook
WhatsApp
Email

Leave a Reply

Your email address will not be published. Required fields are marked *

Related News

Welcome to CReM

My name is Gabrielle. I'm the Administrative Assistant at CReM. Leave us a short message down below. We will get back to you ASAP!